Int. J. Saftds Siructures Vol. 17, No. 6, pp. 681698, 1991 0020-7683 91 $3.00+ 00
Printed in Great Britam. ¢ 1990 Pergamon Press pic

COMPLIANCE OF COATED ELASTIC BODIES IN
CONTACT

L. M. Keer, S. H. Kim, A. W, EBerHARDT and V. VITHOONTIEN
Department of Mechanical Engineering, Northwestern University. 2145 Sheridan Road. Evanston,
IL 60208, U.S.A.

{Received 6 July 1989 : in revised form 21 February 1990)

Abstract—A model is constructed to analyze the effects of normal and tangential loading on
elastically identical coated spheres. The solution for a tangential displacement applied to a circular
patch on the coated surfaces, including the occurrence of micro-slip (either full or partial slippage).
is derived. If it is assumed that the slip region is a circular annulus of inner radius ¢, then the
following two sets of approximations can be made: a “stiff” approximation that satisfies the zero
micro-slip condition exactly for the inner circle and a “soft” approximation that satisfies the
Amontons-Coulomb frictional law exactly for the slip region. It is concluded that the “soft”
approximation gives an accurate value for the symmetric traction component, }[r})} — t')}]. induced
by the normal and tangential loads.

1. INTRODUCTION

For many tribological applications, coated materials provide increased wear resistance.
Some relevant examples of coated products are cemented carbide cutting tips (TiN, TiC),
ball bearings, gears, high speed drills, milling cutters and many machine elements. In this
study. the normal and sliding indentation of identical clastic spheres coated with an elastic
layer is considered.

The state of stress that arises when two deformable bodies are pressed together by
forces normal to the common tangent plane at the point of initial contact is of great
technological interest and has a long history of study. In 1882, Hertz analyzed the problem of
normal frictionless contact for isotropic, smooth homogencous materials. Later, Cattanco
(1938) and Mindlin (1949) treated the same case for rough bodies undergoing normal and
tangential loading. In the context of integral transforms, Muki (1960) has solved problems
of asymmetric surface loading of an elastic half space and layer. Lysmer and Duncan (1972)
published an extensive survey of literature on the problem of a uniform normal traction
distributed over a circular surfiace region. Goodman and Keer (1975) studied the case in
which the deformation takes place in identical elastic surface layers (one in each of the
solids) of arbitrary thickness, bonded to a rigid substrate. In this analysis, their reasoning
is extended to the case in which the substrate is elastic rather than rigid. The solution for
u tangential displacement applied to a circular patch on the layer surface including the case
of micro-slip (cither full or partial slippage) is developed. As in the case of Goodman and
Keer, it is assumed that the slip region is a circuluar annulus of inner radius ¢, and the
probicm is analyzed using the following two approximations: a “stifl” approximation that
satisfies the zero micro-slip condition exactly for the inner circle and a “*soft” approximation
that satisfics the Amontons-Coulomb frictional law exactly for the slip region. Two impor-
tant cascs arc examined. The case of a soft layer on a rigid base, as in Goodman and Keer,
may be used as a model for cartilage on bone in bioengincering studies. The case of a stiff
layer on a softer base, i.c., tungsten on steel, is important in tribological applications.

2. NORMAL LOADING OF COATED SPHERES

Busic equations and derivations

Suppose that two identical spheres with identical elastic surface layers are subjected to
a normal force, P,, which produces a contact area of radius a which is assumed to be small
compared with the radii of the spheres, R. The geometry and coordinate system are shown
in Fig. 1, along with a tangent force, P, (see Section 3). The state of stress in each elastic
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P,

P,

Fig. . Normal und tangential contact of spheres coated with an adherent layer.

layer and substrate due to the normal loading is governed by the following boundary
conditions:

Onz=0
T, =Ty =0, 0<r<ow (la)
u, =w(r), 0<r<u (1b)
t..;.=0, a<r<ow (l¢)

On-=H
U, = Uy, Uy =Upy, Uy =Uq, 0<r<o (2a.b,c)
Tl = Ty Toet = Toyon Topy = Tooo 0 <7 <00 (2d.e.f)

Here, subscripts | and 0 represent the layer and substrate, respectively.

Following Green and Zerna (1954), to satisfy the field equations of the lincar theory
of elasticity, displacements and stresses for elastic layer and substrate are expressed in terms
of harmonic functions F,(r, 0, z) and G,(r, 0, =) through the relations

2u,u,, = FS +:z ar (3a)
1 0F, :0G,
St =255t 170 (3b)
OF, 0G
Uty = 52— (3=4v,)G,+2 52 (30)
d'F, éG, 0°G,
R T T ¢
1 9%F, 190G, =z 3°G,
T = age: ) g Y Gea: (3¢)
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& G 8*G
S B VPO s BRI

- 4z (2=0.1). (30

The harmonic functions F,(r,8,:) and G,(r.6,>) can be taken as

Fi(r.o)= Lt [4 sinh (&2) + B cosh (E2)]E ' Jo(Er) dE (4a)
Gi(r.0) = J; i [C cosh (&) + D sinh (E2)]J,(Er) d& (db)
Fy(r.2) = —f Ule™ %15~ Jo(Er) dE (4c)
Go(r.2) = ~J:c Ve ¥1Jo(ér) dé. (4d)

The boundary conditions (1a) and (2a-f), which hold over the entire plane, are satisfied by
introducing a new coefficient £(£) so that

T (r.0) = *J; () o (8r)¢ dE. &)

The coctlicients 4, B, C, P, U and Vin ¢qns (da -d) can be derived by numerically solving
the following simultancous equations in terms of £(&) :

(JMC. D, U, V]" = &(E) cosh ftanh fi, 1, tanh S, 1]" (6a,b,c.d)
where
A=({1-2v)C, B=21—v)D—¢) {6e.h)
i =
fsinhf—=2(1—v)coshf Pcoshf—(1—=2v,)sinhf —Te? —~T{f+(3—4v))}c?
Peosh fi+(1=2v,)sinh B Psinh B4+2(1~v,)coshff Te# pe®
fsinh 8 Bcosh B+sinh 8 —e# —{B+(1=2vy)}e "
Bcosh B—sinh g fsinh f§ e ! P+2(1=vyle™?
(62)

Here, B = EH and T = g, /p,.
In order to satisly boundary conditions (1b) and (Ic) the following dual integral
equations are developed:

L S(C)J'o(s‘r)dé—j; LBy v o) dE = (Eo ) 0<r<a ()
-

J‘ £(§)Jo(ér)di =0, a<r<co (7b)
0

with
L(B, vy, vo) = 1 +C(3). (7c)

To solve integral equation (7a,b), a technique due to Copson {1961) is followed. When &(&)
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is expressed as

o) =3 L t"3¢o(0J12(E0 dr, ®)

then

(l' Z)l 2

=0, a<r<cx. (9b)

r::i(r.0)=(§) { . ),,.m(anr [$o()] d:}, O<r<a (%)

Now, the boundary condition (l¢) is satisfied automatically, and for the pressure vanishing
at the edge of the contact region r = a,

$o(a) = 0. (10)
Following Goodman and Keer (1975), the governing equation for ¢, can be derived from
(7a) as

Pols) —s"? J; 13 pa() dr L L(B.viovo)ed _a(Es)d -2 (80 dE

123 X
- (E) 4 O G

T l"Vl d\ 0 (\ )"2

The resultant normal foree, P,, is

=J" f —1..,(r.0.0)r dr d0

il (3
n 72 o

=4(5) J‘ da()de. , (12)
- £

Next, consider the two geometrically and elastically identical spheres, to which are bondced
identical concentric elastic surface layers. According to Hertz theory, when these bodies are
compressed by normal forces, the normal displacement at the boundary of the contact
becomes

u,(r,0,0) = }[5,,~r}/R]. O<r<u (13)

where §,, is the relative approach of the two spheres. Then, allowing §,, = C,a*/R, and
using eqns (1b) and (13), egn (11) becomes

d)o(.v)—-s"'zj r"‘zrb.,(:}dlj; LBvi o vo)lJ o 2(E5) S 2 (E0) dE

i3
2 12 | . i
= (—) .. 7 (Cia* =5, (14)

T l"‘Vl...

The stress function ¢, and the rclative approach term C, are determined simultaneously
by means of solution of the symmetric Fredholm integral equation (1) and auxiliary
condition (10). For an infinitely thick layer (a/H = 0), the Hertz result is obtained:
3., = ¢’/ R. In general, however, §,, = C,(a’/R). From (10) and (11) the contact radius, g,
is determined : a/R = C.[2(1 —v,)P./ra’y,]. From (9a). the maximum normal pressure in
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Table 1. Numerical quantities for normal loading
coating layer on a rigid substrate: u,/po = 0.0.v, = 0.3:
2
relative approach (d,,): 6,, = C, ER—;
contact radius (a) : 2-c 2 _2&—_2% ;
R na‘p,
P,
peak Stress (T yman) ! Teziiman = —Cs w
a/H C, C, G,
0.0 1.000 1.178 1.50
0.2 0.887 1.173 1.50
04 0.795 1.145 1.50
0.6 0.728 1.089 .5t
0.8 0.681 1.015 1.53
1.0 0.648 0.936 1.55
20 0.573 0.627 1.72
3.0 0.547 0.459 1.81
4.0 0.534 0.360 1.86
50 0.527 0.296 [.88
the contact region can be calculated : 7. nax) = — C;[P./na?]. The numerical values of C,,

C,; and C; are given in Tables 1 and 2 for the layer thickness range 0 < a/H < 5, and for
different layer substrate combinations.

Numerical results and discussion

Computations have been carried out for several layer substrate combinations. The
thinnest layer considered had a thickness of one-fifth of the radius of the contact region.
Normal stress distributions at the layer surface are given in Fig. 2. The dashed curve is the
casc when the substrate is rigid and corresponds to the soft coating situation studied by
Goodman and Keer (1975). As was determined in their study, as the layer thickness

Table 2. Numerical quantities for normal loading

hard coating: g, /py = 2.0,v, =0.3,v, =0.28;

relative approach (8,,): 48, = C, %;

contact radius (a) :

peak stress (.. ma) :

)

20 -v )P,
%= C;["(— vi) .]:

:
na’y,

P,
T toman) = _C.\[;‘;—_"]

alH c fo c,
0.0 1.000 1.178 1.50
0.2 1.094 1.181 1.50
0.4 1.169 1.199 1.50
0.6 1.217 1.236 1.49
0.8 1.240 1.287 1.48
1.0 1.245 1.347 1.47
2.0 1.198 1.613 1.37
3.0 1.155 1.777 1.35
4.0 1.129 1.880 1.37
5.0 1110 1.952 1.38
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1.04

Seal sl

P./(xa?)
0.5 4
0.0 T T T 1
0.00 0.25 0.50 0.75 1.00

t/a

Fig. 2. Normal and shear stress distribution at surfuce of elastic layer without slip. (—) s¢,/1te = 2.0,
v, =03 v, =028 (——) u/1y =00.v, = 0.3,

increases the normal stress becomes less concentrated. The solid curve is the case when the
layer is stiffer than the substrate. For this case the normal stress becomes more concentrated
as the layer thickness increases. For o/ H = 0.2, both cascs yiclded ncarly identical normal
stress distributions. Typical interfacial normal and shear stress distributions are given in
Fig. 3 for afIl = 1.0. It is scen that for the same contact radius to fayer thickness, a stiff
layer on soft substrate (solid curve) experiences a much higher interfacial normal stress
than a soft layer on a stiff base (dashed curve), while the shears are nearly the same. The
peak interfacial stresses are given in Fig. 4 as a function of a/H. When the substrate is
rigid (dashed curve) the interfacial normal stress becomes more concentrated as the layer
thickness decreases, while the shear stress is most concentrated at a/f/ = 1.8. When the layer
is stiffer than the substrate (solid curve), the interfacial normal stress is most concentrated at
afH ~ 1.8, while the maximum shear concentration occurs at «fH = 3.5

0.60 -
0.45 - =t
P/(xa?)
0304 _
~ ~Trrt
Py/(na?)
0.15
0.00
0.0

Fig. 3. Normal and shear stress distribution at the interface for normal loading (a/H = 1). (—)
g = 2.0, v, =03, vy = 0.28. (——) t\/pta = 0:0, v, = 0.3.
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0.8 4
=Tl (max)
[ Py/(ra?)
0.8+
- - -
-
0.44 -
7
/ - N (max)
/ —_— -
0.2 1 / Y, = — -/ P/(xa?)
) 7,
Y
y/
0.0 i * k 4 | L] L]
° 1 2 3 4 s
oH

Fig. 4. Effect of layer thickness on the peak interfacial stresses for normal loading. (——) /1 = 2.0,
vy = 0.3 vy =028 (——) /iy =00, v, = 0.3,

3. COMPLIANCE FOR TANGENTIALLY LOADED BONDED COATED BODIES

Buasic equations and derivations

Supposc now that the two clastically identical coated spheres described in the previous
section are foaded in the normal direction so as to produce a contact area of radius «,
assumed small compared to R, and subsequently subjected to a tangential load, P,. The
geometry and coordinale systems are shown in Fig. 1. Assuming the contact surfaces are
perfectly rough, no slip will occur in the contact region. This zero-slip condition is identical
to the problem of a tangential displacement applied to two welded bodics (sec Goodman
and Keer, 1977), provided that only those stresses arising from the relative tangential
displacements are considered. The state of stress in cach of the clastic luyer and half space
due to the addition of the tangential loading is governed by the following boundary
conditions :

on:=40
T =i, =0, uy=4, 0<r<ua {15a)
Ty =T =T, =0, a<r<ow (15b)

onz=H
Wy == Uy, Hpy =lpy, Uy =W,y O0<r<ow (15¢)
Toop = Toage Toet = Tzeos Tt = Thp 0 < r <00, {15d)

Here, the symbol A represents a uniform transkational motion whose magnitude depends
on P, To avoid additional complexity A is chosen such that

= A (" +A(r)cos 0. (16)

To satisfy the ficld equations of the linear theory of elasticity, displacements and
stresses are expressed in terms of harmonic functions F,(r,0,2), G,(r,0,z) and H,(r,0,2)
through the relations

¢F, &G, 20H,

e tr (172)

ey, =

SAS 27:6-8
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sy VO 228G, CH,
Haklen = U 30 T 7 G0 or

z.uzu::l = 86{; —'(3_4":)614‘: Cacix
_&°F, (1_2")§_qi+_620,+15211,
A A PR N H R T
_1&F —(1=2 106, =G, 0°H,
T = a0 s WG Y are-
0°F, G, &G,
Ty = 6:2 —2(1_‘1)-6_? +~'§‘:“z‘, (130.1).

(17b)

{i7¢)

(17d)

{17e)

(170)

Here, subscripts | and 0 represent the layer and half space, respectively. The harmonic

functions F,(r.0.z), G,(r.0.2) and H,(r, 8, >) can be taken as

[F(r.0,2). G (r.0.2)]" = [fu(r.2). g.(r, )] cos 8
H(r.0.2) = h,(r.2)sin @

with

("o

Sir.2) = | [Asinh(Ez)+ Bcosh (E2)]E~ 1 (Er) d&

JU

("0

gi(r.2) = ) [C cosh (¢z) + D sinh (82)}J,(ér) dE

LY

.0

h(r.z) = { [Ksinh(2)+ L cosh(E2)}€ "'/ (¢r) dé

Solr,2) = - L Ule ™8 (éndé
golr,2) = -—J; Ve 1/ (&r) dg

ho(r,z) = —~£ Wle ¥1E- 1 (Er) dE.

(18a)
(18b)

(19a)

(19b)

(19¢)

(19d)

(19¢)

(190

Itis convenient to re-write the boundary conditions (15a-d) in cylindrical polar coordinates.

With

T 0 i nT
[uru Uzzy Toras r::z] = {“v(':)’ uf'z’* T(:,,}, Tg:ﬂ cos §

["ﬂ:v 1:“]‘[' = [“l‘)i)s rf‘l‘l]T Sin 07 (1 = O’ l)
the boundary conditions (15) and (16) may be written as

onz=10
P +uf) =0, 0<r<a
V-l =2A, 0<r<a
th+tih =0, a<r<w

f::|(f.9.0} =0, 0<r<w

(20a)
(20b)

(21a)
(21b)
2lcd)
(2le)
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onz=H
W =ud, 0<r<ow 22a)
WP +ul) = uld+ull), 0<r<oo (22b.c)
ikt =ttt 0O<r<o (22d.e)
=1, 0<r<oo. (22)

The boundary conditions (21e) and (22). each of which holds over the entire plane, are
satisfied by solving the following simultaneous equations in terms of two coefficients S(¢)
and T(J):

JYC.D, U, V]" = §(§—T)cosh f[1, tanh B, 1, tanh g]" (23a,b.c.d)
)

where
Ad=(1-2)C=KS=T), B=21-v)D 23e.0)
| (S+ T)(sinh f+T cosh B) L (S+T)
= .l. = — - = - SO ﬂ_
K=:5+D. L=-3—Cwp+Tsmnp " 7 ~Zcosh p+Tsinhp°

(23g.h.1)
Here i = EH, T = p /i,y as before, [t is interesting to note that {J} for the tangential load
is identical to {J} for the normal load ; however, the right-hand sides of the equations are

different. The mixed boundary conditions (21a-d) require that

na<r<owo

0

[F3(r.0) + 1) (r. 0)] = j ) S()e/:(EnNdS =0 (24a)

[z91(r.0) =151 (r, 0)] = jm T(5)EJo(¢r)dE =0 (24b)

ind<r<a

2l‘t[“1:'(’-0)+ll¢(i'|)("0)] =J [=viT=(2—v))S1J,(¢r)dE
+ if [(M—N)T~(M+N)S|Js(¢NdE =0 (25a)
240, (r.0) ~ (7, 0)] = j [=v,S— Q=) T]Jo(Er) d

+ -;- J;t [(M—=N)S—(M+N)TJo(ér)dE = 4u, A (25b)

where

I cosh f+sinh ﬁ} (26a.b)

M(B) =2(1—-v )(D-1), N(B) = "2{1 - I sinh f+cosh
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The mixed boundary conditions are satisfied (see Westmann, 1963) by taking

§=¢ :Jutl W) 5 2(Eryde (27a)

0
r=¢' J (0 .,.(st)dt——;—c'”zj "3 (1) TS de. (270)
-"
The resultant tangential loading is given by the expression

P = —f. J — . (r0,0)r drdf = —n J [(r.0) -t (r.0)]r dr  (282)
0 0 0

= -Qm"? L “xl(t)dr. (28b)

Then, using the following dimensionless forms

s=o0a, t=1ta, r=pa, P=CEH,
1) = aX(0). ¥,(8) = ma'¥ (s).  $o(s) = pt1a®y(0). (29)

the governing cquations for ¥, and X, can be derived from the boundary conditions (25a,b)
as

Q-voXi@+ | “ IV()I( yde—2 L (¢ ll’()l )d
2-v))X, 2\ X (t)s(o, t)dr— . i (D (o, 1)dr

1/2
7[ a

and
X.(a)—vla"[” X, (e)de+ (,’I)jl X (2)15(0, ) dt
—‘1%':—"'—) ¥\ (0) - 2_'v|~ (—"‘;) fol ¥\(D)l(e,1dt =0, (31)
where
Is(a.1) = 0 (M + N) cos ([io ;i) cos (/fr %) dp (324)
I.(6.7) = : [M—(1—v,)N]cos (/fa g)[—cos (/rr ;’,)+ (pr %) sin (/h: ;,)] dp

(32b)

I(o,7) = Jo (M—N)[—cos <ﬁa -al)+ ([Ia ;I_)_ l sin (/Ia 2)] cos <ﬁr ia{_) dp (32¢)
Lt =| (M+( —v,)N][—cos (/30 %)4- <[la %) sin (/;a %)]
x [-cos (/h %)+ (ﬁr 7‘;—) sin (ﬁr %)] dg. (32d)
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The resultant dimensionless tangential load and shear stress components on the loaded
surface are obtained as

p 1
;:a; = —(2m)"? L X\ (v)dt (33
2 12 "\P l . | —2\{; 4
P R (;) [(f () I)’ —p? | %:___‘;%dt] (34a)

12
ui ' -] = (i) [(1-p2)“"{X v.m}

"X v [t )
- s dr— T_ ORI
b (T5—p)"° 2—-vy ) (t5—=p)""

dr] . (34b)

To convert the above shear stress components from polar coordinates to Cartesian coor-
dinates the following equations are needed ;

T (7 0.2) = e =i ]+ ) + g ] cos 20 (35a)
T (r.0,2) = )} + 283 ] sin 20, (35b)

After calculating X', (0) and W,(1) [by using the no-slip conditions corresponding to eqns
(30) and (31)]. the stresses and displacements can be calculated numerically using (17),
(18). (19). (23) and (27).

When the layer is infinitely thick (¢/ /f = 0) the compliance is

4 ) 1/2
== (370w (36)

2—v,\n) ua

It is noted that there is a singularity in both [t8)} i}l and [t} +lJatp =1 (r=a). In
view of eqns (35a,b) the first term on the right-hand side of cqn (34b) has a singularity in
the radially symmetric portion, whercas the first term on the right-hand side of equation
(34a) has a singularity in the asymmetric portion. From (36), only the radially symmetric
singularity appears when the layer is infinitely thick. However, both singularitics appear
when the layer has finite thickness. In some cases this non-radially symmetric singularity
can be ignored in an approximate sense, which can greatly simplify the analysis (see
Goodman and Keer, 1975).

The physical quantity C, = 2A/P,, the initial tangential compliance, is of technological
interest. The variation of this quanuty for various material properties and layer thicknesses
is given in Table 3. For the case of a rigid substrate the results are identical to those obtained
by Goodman and Keer (1975).

Numerical results and discussion

Computations have been carried out for several layer-substrate combinations. Shear
stress distributions at the layer surface are given in Fig. 2. The effect of the combination of
materials and layer thickness on the shear stress distribution is similar to the normal load
case. Typical interfacial normal and shear stress distributions arc given in Fig. 5 for
a/H = 1.0. It is noted that the case of the stiff layer (solid curve) gives the least concentrated
interfacial stress distributions. The peak interfacial stresses are given in Fig. 6. In view of
eqn (35), iz} —t43)] is the symmetric interfacial stress component whereas 3[t!!} +1431] is
the asymmetric interfacial stress component. Both interfacial stress componcms increase as
the layer thickness decreases; however, the interfacial stress component, 3[t{!} —t4\]. is
larger than §[c!!} +t3}] for the case of a rigid substrate (dashed curve), while the converse
is true for the case of a stiff layer (solid curve).
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Table 3. Initial compliance. C, = 2A/P, (Case L : p\/po = 0.0, v, = 0.3;
Case 2. u,/uo=10.33. v, =0.33, v,=0.28: Case 3: yu,/u,=1.0,
v, =0.28,v,=028;Cased: u /uy=20,v, =03, v,=0.28)

(RQA/PJua = Cpya

alH Case | Case 2 Case 3 Case 4
0.0 0.425 0.418 0.418 0.425
0.2 0.387 0.397 0.418 0.447
04 0.352 0.377 0.418 0.468
0.6 0.321 0.360 0.418 0.486
08 0.295 0.345 0.418 0.503
1.0 0.272 0.332 0418 0.518
20 0.194 0.286 0418 0.574
3.0 0.150 0.258 0418 0.613
4.0 0.122 0.240 0.418 0.640
5.0 0.104 0.227 0.418 0.661

4. THE EFFECT OF MICRO-SLIP IN TANGENTIALLY LOADED COATED BODIES

Basic equations and derivations

[n the previous section tangential loading was considered for the two identical welded
and coated elastic spheres. The model of normal and tangential contact loading of elastically
identical coated spheres follows the same derivations as in Goodman and Keer (1975).
Because a singularity arises in the absence of slip, in reality then, for this contact problem,
slip must occur. If it is assumed that the slip region is a circular annulus of inner radius
¢ < a, then this inner radius can be chosen so as to climinate the radially symmetric
singularity in 7., produced by the first term on the right-hand side of eqn (35a). When the
layer is not infinitely thick, non-radially symmetric singularities occur both in 1., and ..
Although this layer cifect presents an obstacle to solving the tangentially loaded layer
contact problem, it is possible to obtain upper and lower bounds for quantitics of tech-
nological interest.

The state of stress for normal loading is first derived in terms of the stress function ¢,,.
When the tangential load is applied subsequent to normal loading, the state of stress is
given by the harmonic functions shown in eqns (17d-f). The contact region is then divided
into two purts: an inncr circle, 0 < r < ¢, where no slip occurs, and an annular slip zone,

1.00 9
1 -~
N\
/ \ 221
0.75 7
/ P
J(xal)
/ \/ L0
/ 2 (Tt - Toul
0.50 4 / \ P./(xa?)
)
I — \ lz [t‘r:: + t(.lxl]

~ N Py/(ra?)

0254 / -
d X
/ / S
L
Q.00 T T T .
03 o5 1.0 1.5 2.0
r/a

Fig. 5. Normal and shear stress distribution at the interface for tangential loading without slip
(a/H = 1), (—) u\/itg =20, v, =03, vy = 0.28. (——) py/pto = 0.0, v, = 0.3.
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U]

PJ(u‘)
1 [t"’ + t("]

bR
Pu/(ra?)

Fig. 6. Effect of layer thickness on the peak interfacial stresses for tangential loading without slip.
(—) iijpe = 2.0.vy =03, v = 0.28. (——) u\/1to = 0.0, v, = 0.3.

¢ < r < a, where shear tractions obey the Amontons-Coulomb friction law. To satisfy these
mixed boundry conditions the following equations are used instead of equations (27a.b)

S

re “
é'”[ ! ":alu(r)ls,z(ét)dwgf t’“‘bu(t)h/z(ét)dr] (37a)

J s v "
T= 6"'[ 10 g de - ,-~‘~~'-v-- "3, (0 (&) dr
.‘ =7V

0 0

(u

=2/ o) . \2(ED) dt - i»zi- ‘1 Ju’5/2¢(l(’)13/z(§’)d’]- (37b)

o ¢

Here, S represents the cocflicient of friction and J is, as yet, an unknown dimensionless
constant that will be automatically determined later. Since there is no singularity at the
boundary dividing the slip and no-slip regions, this requircment is met by imposing the
auxiliary conditions

xi(e) = =2/¢o(0). ¥i(c) = 0 !Po(t) (38a,b)

By substituting eqns (37) into eqn (24) and making use of eqns (29) and (38a,b), dimen-
stonless shear stresses on the contact surfuce can be derived as follows:

On:=0
[t“’ (l)]___f;[Jc/“[f—ZW|(t)] de

(Zn)l/l (1’ )l 2

! [(bo(’-')]

/o (_c )l;l

P [5 '@
@m L"), (F=ph)'?

dr:l, O<p<clu (39a)

dt], cla<p<| (39b)
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and
m.lm 0 _ ] — _ ! [J‘” X1 _ b dy(r)
o Pt —wil = — | |, oY | e
vi [ "‘{r‘*‘.(r)] v, f’t"[r’@o(t)]’ J
+2—"|J: RS dr+ —Vxé Brampys dr §.

O<p<c/a (39%)
i ’ i .-1r1,3 i
®;(7) v, ' [’ Dy(1)] }
(ﬁn)h.[ 2f A (tz“p:)!;:dt"‘z__v“sv{) T —p)" dr

cla<p<oo. (39d)

The resultant tangential load is derived from (28a) and (39c¢):

vla 1
P": = —(Zn)'“[j. X|(t)dt—2fj (D(.(t)dt]. (40)

ja

By making use of the no-slip boundary conditions. (21a.b}, together with the auxiliary
conditions (38a.b), governing equations for the stress functions W, and X, as well as the
unknown dimensionless constants f and § can be derived in the form of the simultancous

Fredholm integral equations as
l a vla
e v .
3, (,,) ‘[' Pi() (e, t)de

o « ! .
1oy \sr) ), PO lale 1) de
2 UIA
-4(-) - (4la)
n a

I )

l ela
(2“\',)X‘(0)+T£(I(II)J; «"i(t)ls(”g t)dt"

1
2! (")J‘ @y (2} s(a. t) d+
n \H

It

b B AV

and

" l (]
Xl(o')—-v.a"j X (t)de+ (“)f X (0)o(a, 1) de
o x\H/ Jo

4 2 cla
—»(21—-1‘—)—‘?,() ~_’——;(‘—'>[ ¥ (1)y(o, 1) dt

«-?"(‘—" ‘m ! d ‘S ”) O, (1)t (0, t)dr.  (41b
“"f}:' i w(t) (0, 7) r+ i (1)t (o, 1) dt.  (41b)

The auxiliary conditions become

[ c c c 2 ¢
XI <;1) = - Zf(po ('a)' q’l (&) = (5(‘;) (DO (u) (428,b)

In the slip region, c/a < p < 1, shear stresses on the contact surfuce can be expressed
[in view of (39b,d)] as

T = [T —ipt. Sfe, +picos 20}, 1.4 = — !5t {p’sin 20} (43a.b)
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Table 4. Bounds for tangential load, compliance and stress (stress components are
evaluated at r = 0 u,/ue = 0.0, v, = 0.3, a/H = 5.0)

¢ _ radius of non-slip region
a radius of contact region
Bound 0.2 04 0.6 0.8
P, A 0.994 0.946 0.794 0.475
fP. B 0.994 0.946 0.793 0.475
A A
p. B 0.103 0.089 0.075 0.062
L =) A ~1.660 —1.419 1182 —0972
¢ P B 1676  —1433 1192 —0977
na-
5/f A -0.202 -0.193 -0.168 -0.139
where
1 _-1 3 ’ { ’
v T [t De(7) (1)
e = '_j ._,_}--‘;’ ,,,2] dr g dt < L. (43c)
2-vi ), (7=p7) b (T°—=p7)

A. Stiff approximation. For this bound the no-slip condition (41a,b) for the circular
region, 0 < p < ¢/, is satisticd exactly. For a given value of ¢/a, stress functions X, (a) and
W, (). as well as the unknown parameters f and J, can be determined through the usc of
eqns (41a,b) and (42). However, the shear stresses given in eqns (39b,d) do not satisfy the
Amontons Coulomb friction law exactly in the slip region, ¢/a < p < 1. The quantitics in
brackets in cqns (434,b) represent error terms. This error is small, however, provided (i)
a/H is small or (ii) ¢// < 1. The compliance, shear stress components, P,/ f P, and 6/ f for
representative values of ¢/a, a/H, and different layer-substrate combinations are given as
bound *“A™ in Tables 4-6.

B. Soft approximation. In this bound the Amontons—Coulomb friction law is satisfied
exactly at every point in the slip region, ¢/a < p < 1. This can be achicved by setting

Table 5. Bounds for tangential load, compliance and stress (stress components are
evaluated at r = 0; g, /p, = 0.33, v, = 0.33, v, = 0.28, u/H = 5.0)

¢ _ radius of non-slip region
a  radius of contact region
Bound 0.2 0.4 0.6 08
P, A
7e. B 0.993 0.942 0.790 0.480
A A
p e B 0.182 0.166 0.147 0.128
el =i A —-1.415 1173 —-0.959 -0.779
A B 1429 —1L186  -0967  —0.784
na?

o/ f A —-0.151 —0.141 -0.121 -0.099
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Table 6. Bounds for tangential load. compliance and stress (stress components are
evaluated at r = 0; p,/pg = 2.0, v, = 0.3. v, = 0.28, o/ H = 5.0)

€ radius of non-slip region
e radius of contact region
Bound 0.2 0.4 0.6 0.8
P, A
7P, B 0.991 0.931 0.779 0.497
A A
p e B 0.451 0.423 0.391 0.359
L =] A -1.057 ~0.808 ~0.629 ~0.501
2 p B -1.047  —0798  —0621  —0.495
na-
Sf A 0.108 0.104 0.086 0.065
W,(o) = J = 0 ineqns (43a,b). Then
My X Py(7)
T = = =7 sy dr—2 sdrf, O0<p<cla 44a
! (27t)"‘U; (r'-p')” a4 a (12— p )" p<d @
2 f (bo(f)
(71:)”“ = ),,_ dt= fr., cla<p<li (44b)
7,.=0, 0<p<oo, (44¢)

By making use of the no-slip conditions in the x dircction (41a) together with the auxiliary
condition (42a) X () and f can be obtained. The result of this approximation is that the
boundary condition t.,, = 0 is satistied as shown in eqn (44¢) instead of u,, = 0.

The compliance, shear stress components, P/ f P, and §/f for the representative values
of ¢/a, ajH, and different layer-substrate combinations are given as bound “B” in Tables
4-6.

Numerical results and discussion

Computations have been carried out for several layer-substrate combinations. The
bounds for tangential load, compliance and surfuace stress components are given in Tables
4-6. It is noted that, for all layer—substrate combinations considered, the tangential load
and compliance were identical to three decimal points. As the layer thickness decreases
(«/ H incrcases) these combinations give different results. Typical and most sensitive of these
quantitics is the stress. When the layer is softer than the substrate, the **soft™ approximation
gives an upper bound and the “stifl** approximation gives a lower bound for the symmetric
stress component. When the layer is stiffer than the substrate, on the other hand, the “soft”
approximation gives a lower bound and the “'stiff”’ approximation gives an upper bound
for the symmetric stress components. This trend is reflected by the quantity u,/ug. When
/e > 1, the stiff approximation yields an upper bound : when u,/u, < 1, the soft approxi-
mation yields the upper bound. However, in each case the two approximations yield a
solution which differs by less than 3%. Therefore, in the present figures, only the results
using the soft approximation are shown. These trends are shown for the two cases : 4 coating
layer on a rigid substrate (Fig. 7a) and a hard coating layer on a soft substrate (Fig. 7b).
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Fig. 7. (a) Shear stress distribution at surface of elastic layer with micro-slip. a/H = 5.0, u,/p, = 0.0

and v, = 0.3. (b) Sheur stress distribution at surface of elustic layer with micro-slip. ¢/H = 5.0,
/iy = 2.0, v, = 0.3, and vy = 0.28. c¢/a = radius of no-slip region/radius of contact region.

The relations between the size of slip zone, lateral motion and tangential load for those
cases arc presented for rigid substrate (Fig. 8a) and for a hard coating (Fig. 8b). For all
cascs, the thickness of the coating layer exhibits an insignificant influence on the ratio of
shear traction and friction force. In other words, P,/ f P, is independent of the layer thickness
for both hard and soft coatings. On the contrary, the ratio of lateral motion in the absence
of slip and lateral motion with slip, A,/A,, varies with the layer thickness. The type of coating
(hard or soft) also has a significant influence on the lateral motion. For a soft coating, the
ratio of the lateral motion increases as the coating layer becomes thicker, while the opposite
conclusion is true for a hard coating. In future studies in these areas, the soft approximation
should be used since it is simpler and more cost-effective with regard to computer time.
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Fig. 8. () Relation between slip zone dimension, fateral motion and tungential load for g, /u, = 0.0

and v, = 0.3, (b) Relation between slip zone dimension, lateral motion and tangential loud for

e =20, vy =03 and v, = 0.28. o/H = radius of contuct region/thickness of clastic layer;

¢fa = rudius of no-slip region/radius of contact region; A /A, = lateral motion in absence of
slip/lateral motion with slip.
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